Tap Tap Infinity Cheat Engine

About This Game

A virus outbreak on a distant trans-federation planet unleashes horrors from humanity's past. A powerful, rapidly growing zombie horde threatens the very existence of humankind, and the only ones capable of fighting back are the highly skilled, highly weaponized special forces of the S A S. Choose from 3 unique character classes, maximize the fully customizable skill tree, and select from hundreds of weapons and armor pieces to build the ultimate zombie killing hero. Play dynamic, challenging levels in single player or 4 player cooperative multiplayer and give our ravaged civilization its last best hope for survival.

Editing Infinity Engine Game Data (on Android). The Edit dialog box to commit your changes; Tap the disk icon in the menu bar to save the file. Originally posted by:I use windows 10, can´t find:/This is the same location it is on for windows 10 as well. Tap Tap Infinity. All Discussions. If cheat engine's speed hak gets patched then im going to stop playing the game #1. Olof gustafsson. Sep 15, 2015 @ 11:37am. Rucoy Online is a very popular MMO for Android.The game is a ton of fun, especially when you’re playing with friends. However, while Rucoy Online is definitely an enjoyable game it’s infinitely more fun if have a ton of diamonds at your disposal. Marvel Strike Force Cheats – Unlimited Power Cores + Gold. February 12, 2019 by Jesse. Marvel Strike Force is one of the most popular action games. The game was released in 2018 by Foxnext and became an instant hit. However, many people need free Power Cores and Gold. For that reason many people are looking for hacks.

INTENSE ACTION
Zombies swarm the screen, exploding into bits under your hail of bullets. Each of the 17 unique zombie types have special attacks and behavior, and they can evolve - manifesting terrifying new powers as you progress through the game. And just when you think you've beat them all, savage boss zombies hunt you down, puking out acid worms or storming after you in rage mode. Learn their strengths and weaknesses as you lead the action across 7 story-driven maps with varying victory conditions.
UNBEATABLE 4 PLAYER CO-OP
Quickmatch with up to 3 other players of similar level and use the custom skills and weapons chosen by all players to form an effective fire team. Coordinate auto-turret placements, high level room-clearing powers like Assault Team, Aerial Bombardment, and Zombie Antidote, and move physics objects to create temporary cover while you paint the room red.
HEAPS OF EPIC LOOT
Over 160 incredible guns and armor pieces are locked up tight inside increasingly rare strongboxes that you can find in secret rooms or on the mangled remains of your enemies. Your loadout includes a pistol and two rifle class weapons - choose from fast firing submachine guns, devastating shotguns, high damage assault rifles, brutal machine guns, flamethrowers, rocket launchers, lightning guns, and more. Armor up for protection against physical, thermal, and chemical attacks, then round out your arsenal with auto-turrets, grenades, and special high damage ammo to rip through the undead before they rip through you.
AMAZING RPG-STYLE UPGRADES
The Assault, Medic, and Heavy Gunner classes each have unique upgrade trees, giving each character 19 skills to customize. Hundreds of guns and armor pieces have a range of grades and a powerful RED version when you reach high levels. In addition you can add powerful augmentations to your guns and gear which enhance core properties like damage and rate of fire, but can also improve reload time, resist damage, and heal.
(Redirected from Cheat Sheet)


Kerbal Space Program rocket scientist's cheat sheet: Delta-v maps, equations and more for your reference so you can get from here to there and back again.

  • 1Mathematics
    • 1.3Delta-v (Δv)
  • 2Math examples

Mathematics

Thrust-to-weight ratio (TWR)

→ See also: Thrust-to-weight ratio

How hard do your engines push UP? That's 'thrust'.

How hard does gravity pull DOWN? That's 'weight'.

The ratio of those two is, surprisingly, the 'thrust-to-weight' ratio.

If thrust is pushing harder then weight, your rocket goes up! Hooray!

If weight is pulling harder than thrust, your rocket does not go up. Sad!

That's the 'thrust-to-weight' ratio, or TWR, in a nutshell.

TWR=FTmg>1{displaystyle {text{TWR}}={frac {F_{T}}{mcdot g}}>1}
Where:
  • FT{displaystyle F_{T}} is the thrust of the engines
  • m{displaystyle m} the total mass of the craft
  • g{displaystyle g} the local gravitational acceleration (usually surface gravity)

If TWR is less than one, then your rocket will not be going into space. You will need more engines, or perhaps MOAR BOOSTERZ!

If TWR is significantly above, say, 2.0, your rocket will ZOOM! But it might ZOOM too hard for your poor Kerbalnauts. Most rockets, straight off the launch pad, will utilize a TWR between 1.5 and 2.0.

Specific Impulse (Isp)

Tap
→ See also: Specific impulse

Specific impulse measures the efficiency of a particular engine. Because this depends on the pressure of a rocket's surroundings, this can change between Sea Level and Vacuum (in space). Most engines are designed for optimal performance either at Sea Level (the big ones that drive your first stage and boosters, which have lots of thrust!) or Vacuum (where they won't burn as much propellant, but can be VERY efficient).

Specific impulse is used in important equations like THE ROCKET EQUATION (see next section) to determine how much oomph (or 'delta-vee') you can get out of a given amount of propellant. The higher the specific impulse, the more efficient an engine is!

In real life, specific impulse is governed by things like combustion chamber pressure and propellant energy (hyrdogen/oxygen is more efficient than kerosene/oxgyen). Fortunately for Jebediah, our dear Kerbals only have one brand of fuel to worry about.

Delta-v (Δv)

Basic calculation

→ See also: Tutorial:Advanced Rocket Design

Basic calculation of a rocket's Δv. Use the atmospheric and vacuum thrust values for atmospheric and vacuum Δv, respectively.

Δv=ln(MstartMend)Isp9.81ms2{displaystyle Delta {v}=lnleft({frac {M_{start}}{M_{end}}}right)cdot I_{sp}cdot 9.81{frac {m}{s^{2}}}}
Where:
  • Δv{displaystyle Delta {v}} is the velocity change possible in m/s
  • Mstart{displaystyle M_{start}} is the starting mass in the same unit as Mend{displaystyle M_{end}}
  • Mend{displaystyle M_{end}} is the end mass in the same unit as Mstart{displaystyle M_{start}}
  • Isp{displaystyle I_{sp}} is the specific impulse of the engine in seconds

True Δv of a stage that crosses from atmosphere to vacuum

Body Δvout
Kerbin 2500 m/s
other bodies' data missing

Calculation of a rocket stage's Δv, taking into account transitioning from atmosphere to vacuum. Δvout is the amount of Δv required to leave a body's atmosphere, not reach orbit. This equation is useful to figure out the actual Δv of a stage that transitions from atmosphere to vacuum.

ΔvT=ΔvatmΔvoutΔvatmΔvvac+Δvout{displaystyle Delta {v}_{T}={frac {Delta {v}_{atm}-Delta {v}_{out}}{Delta {v}_{atm}}}cdot Delta {v}_{vac}+Delta {v}_{out}}

Maps

Various fan-made maps showing the Δv required to travel to a certain body.

Subway style Δv map (KSP 1.2.1):


Total Δv values

Δv change values

Δv with Phase Angles

Precise Total Δv values

WAC's Δv Map for KSP 1.0.4

Maximum Δv chart

This chart is a quick guide to what engine to use for a single stage interplanetary ship. No matter how much fuel you add you will never reach these ΔV without staging to shed mass or using the slingshot maneuver. (These calculations use a full/empty fuel-tank mass ratio of 9 for all engines except those noted.)
ISP(Vac) (s) Max Δv (m/s) Engines Remarks
250 5249 O-10 'Puff' Monopropellant (max full/empty mass ratio = 8.5)
290 6249 LV-1R 'Spider'
24-77 'Twitch'
300 6464 KR-1x2 'Twin-Boar'
305 6572 CR-7 R.A.P.I.E.R.
Mk-55 'Thud'
310 6680 LV-T30 'Reliant'
RE-M3 'Mainsail'
315 6787 LV-1 'Ant'
KS-25 'Vector'
KS-25x4 'Mammoth'
320 6895 48-7S 'Spark'
LV-T45 'Swivel'
RE-I5 'Skipper'
340 7326 KR-2L+ 'Rhino'
T-1 'Dart'
345 7434 LV-909 'Terrier'
350 7542 RE-L10 'Poodle'
800 17238 LV-N 'Nerv'
4200 58783 IX-6315 'Dawn' Xenon (max full/empty mass ratio = 4.167)

(Version: 1.6.1)

Math examples

TWR

  • Copy template:
TWR = F / (m * g) > 1

Isp

  1. When Isp is the same for all engines in a stage, then the Isp is equal to a single engine. So six 200 Isp engines still yields only 200 Isp.
  2. When Isp is different for engines in a single stage, then use the following equation:

Cheat Engine

  • Equation:

Isp=(F1+F2+)F1Isp1+F2Isp2+{displaystyle I_{sp}={frac {(F_{1}+F_{2}+dots )}{{frac {F_{1}}{I_{sp1}}}+{frac {F_{2}}{I_{sp2}}}+dots }}}

  • Simplified:
Isp = ( F1 + F2 + ... ) / ( ( F1 / Isp1 ) + ( F2 / Isp2 ) + ... )
  • Explained:
Isp = ( Force of thrust of 1st engine + Force of thrust of 2nd engine...and so on... ) / ( ( Force of thrust of 1st engine / Isp of 1st engine ) + ( Force of thrust of 2nd engine / Isp of 2nd engine ) + ...and so on... )
  • Example:
Two engines, one rated 200 newtons and 120 seconds Isp ; another engine rated 50 newtons and 200 seconds Isp.
Isp = (200 newtons + 50 newtons) / ( ( 200 newtons / 120 ) + ( 50 newtons / 200 ) = 130.4347826 seconds Isp

Δv

  1. For atmospheric Δv value, use atmospheric Isp{displaystyle I_{sp}} values.
  2. For vacuum Δv value, use vacuum Isp{displaystyle I_{sp}} values.
  3. Use this equation to figure out the Δv per stage:
  • Equation:

Δv=ln(MstartMdry)Isp9.81ms2{displaystyle Delta {v}=lnleft({frac {M_{start}}{M_{dry}}}right)cdot I_{sp}cdot 9.81{frac {m}{s^{2}}}}

  • Simplified:
Δv = ln ( Mstart / Mdry ) * Isp * g

Tap Tap Infinity Cheat Engine Mod

  • Explained:
Δv = ln ( starting mass / dry mass ) X Isp X 9.81
  • Example:
Single stage rocket that weighs 23 tons when full, 15 tons when fuel is emptied, and engine that outputs 120 seconds Isp.
Δv = ln ( 23 Tons / 15 Tons ) × 120 seconds Isp × 9.81m/s² = Total Δv of 503.0152618 m/s

Maximum Δv

Simplified version of the Δv calculation to find the maximum Δv a craft with the given ISP could hope to achieve. This is done by using a magic 0 mass engine and not having a payload.
  • Equation:
Δv=21.576745349086Isp{displaystyle Delta {v}=21.576745349086cdot I_{sp}}
  • Simplified:
Δv =21.576745349086 * Isp
  • Explained / Examples:
This calculation only uses the mass of the fuel tanks and so the ln ( Mstart / Mdry ) part of the Δv equation has been replaced by a constant as Mstart / Mdry is always 9 (or worse with some fuel tanks) regardless of how many fuel tanks you use.
The following example will use a single stage and fuel tanks in the T-100 to Jumbo 64 range with an engine that outputs 380 seconds Isp.
Δv = ln ( 18 Tons / 2 Tons ) × 380 seconds Isp × 9.81m/s² = Maximum Δv of 8199.1632327878 m/s
Δv = 2.1972245773 × 380 seconds Isp × 9.82m/s² = Maximum Δv of 8199.1632327878 m/s (Replaced the log of mass with a constant as the ratio of total mass to dry mass is constant regardless of the number of tanks used as there is no other mass involved)
Δv = 21.576745349086 × 380 seconds Isp = Maximum Δv of 8199.1632327878 m/s (Reduced to its most simple form by combining all the constants)

True Δv

  1. How to calculate the Δv of a rocket stage that transitions from Kerbin atmosphere to vacuum.
  2. Assumption: It takes roughly 2500 m/s of Δv to escape Kerbin's atmosphere before vacuum Δv values take over for the stage powering the transition (actual value ranges between 2000 m/s and 3400 m/s depending on ascent). Note that, as of KSP 1.3.1, around 3800 m/s of Δv is required to reach an 80km orbit from the KSC.
  3. Note: This equation is a guess, an approximation, and is not 100% accurate. Per forum user stupid_chris who came up with the equation: 'The results will vary a bit depending on your TWR and such, but it should usually be pretty darn accurate.'
  • Equation for Kerbin atmospheric escape:

ΔvT=ΔvatmΔvoutΔvatmΔvvac+Δvout{displaystyle Delta {v}_{T}={frac {Delta {v}_{atm}-Delta {v}_{out}}{Delta {v}_{atm}}}cdot Delta {v}_{vac}+Delta {v}_{out}}

  • Simplified:
True Δv = ( ( Δv atm - 2500 ) / Δv atm ) * Δv vac + 2500
  • Explained:
True Δv = ( ( Total Δv in atmosphere - 2500 m/s) / Total Δv in atmosphere ) X Total Δv in vacuum + 2500
  • Example:
Single stage with total atmospheric Δv of 5000 m/s, and rated 6000 Δv in vacuum.
Transitional Δv = ( ( 5000 Δv atm - 2500 Δv required to escape Kerbin atmosphere ) / 5000 Δv atm ) X 6000 Δv vac + 2500 Δv required to escape Kerbin atmosphere = Total Δv of 5500 m/s

See also

Tap Tap Infinity Cheat Engine

Retrieved from 'https://wiki.kerbalspaceprogram.com/index.php?title=Cheat_sheet&oldid=100740'